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Abstract 
 
 
Objectives: To derive models that identify patients with COVID-19 at high risk for stroke.   

 

Materials and Methods: We used data from the AHA’s Get With The Guidelines® COVID-19 

Cardiovascular Disease Registry to generate models for predicting stroke risk among adults 

hospitalized with COVID-19 at 122 centers from March 2020-March 2021. To build our models, 

we used data on demographics, comorbidities, medications, and vital sign and laboratory 

values at admission. The outcome was a cerebrovascular event (stroke, TIA, or cerebral vein 

thrombosis). First, we used Cox regression with cross validation techniques to identify factors 

associated with the outcome in both univariable and multivariable analyses. Then, we assigned 

points for each variable based on corresponding coefficients to create a prediction score. 

Second, we used machine learning techniques to create risk estimators using all available 

covariates.  
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Results: Among 21,420 patients hospitalized with COVID-19, 312 (1.5%) had a cerebrovascular 

event. Using traditional Cox regression, we created/validated a COVID-19 stroke risk score with 

a C-statistic of 0.66 (95% CI, 0.60-0.72). The CANDLE score assigns 1 point each for prior 

cerebrovascular disease, afebrile temperature, no prior pulmonary disease, history of 

hypertension, leukocytosis, and elevated systolic blood pressure. CANDLE stratified risk of an 

acute cerebrovascular event according to low- (0-1: 0.2% risk), medium- (2-3: 1.1% risk), and 

high-risk (4-6: 2.1-3.0% risk) groups. Machine learning estimators had similar discriminatory 

performance as CANDLE: C-statistics, 0.63-0.69.  

  

Conclusions: We developed a practical clinical score, with similar performance to machine 

learning estimators, to help stratify stroke risk among patients hospitalized with COVID-19. 
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Introduction 

 

Coronavirus Disease 2019 (COVID-19) is the most impactful pandemic of our lifetime. As of 

March 2022, there have been more than 470 million confirmed cases of COVID-19, leading to 

more than 6.0 million deaths worldwide.(1) Although COVID-19 is primarily a respiratory illness, 

multiple studies have found that the SARS-CoV-2 infection promotes immune dysregulation, a 

hypercoagulable state, and thrombotic complications.(2-8) Additionally, multiple studies have 

reported that COVID-19 is associated with an increased risk of stroke.(9-14) Furthermore, 

strokes appear to be more severe and associated with worse outcomes in patients with COVID-

19 infection.(15, 16)  

 

Identifying patients with COVID-19 who have an elevated risk for stroke may aid in 

management and therapeutic decisions. We therefore used multicenter data from the 

American Heart Association’s (AHA) Get With The Guidelines® (GWTG) COVID-19 Cardiovascular 

Disease Registry to create risk stratification models to help identify incident stroke among 

patients hospitalized with COVID-19. We derived and validated an easy-to-use clinical score 

encompassing clinical factors at hospital presentation associated with incident stroke, as well as 

constructed three different machine learning algorithms using all available covariates. Our 

prespecified study hypothesis was that older age, vascular risk factors, and laboratory markers 

of inflammation and thrombosis would be associated with an increased risk of stroke in 

patients hospitalized with COVID-19.   
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Methods 

 

Design, Setting, and Participants  

 

We conducted a retrospective cohort study using prospectively collected data from patients 

enrolled in the AHA COVID-19 Cardiovascular Disease Registry. The details of this registry have 

been previously described, but in brief it is powered by the AHA GWTG quality improvement 

program and aims to elucidate the characteristics and cardiovascular outcomes of patients 

hospitalized with COVID-19 infection in the United States.(17) The registry includes over 200 

data elements on consecutive patients hospitalized with COVID-19 at participating sites, which 

comprised urban and rural hospitals of all sizes across all geographic regions of the continental 

United States. Each site that participated in the registry obtained institutional review board 

approval or exemption and was granted a waiver of informed consent under the common rule. 

The Weill Cornell Medicine institutional review board confirmed exemption status for this 

study. The data for this analysis are maintained by the AHA and can be made available through 

written application. Our analysis followed guidelines from the REporting of studies Conducted 

using Observational Routinely collected health Data (RECORD) statement.(18)  

 

We included all patients aged 18 years or older who were hospitalized at 122 centers from 

March 1, 2020 to March 31, 2021 with active COVID-19 infection confirmed by laboratory 

testing (either a positive PCR or IgM antibody test for SARS-CoV-2). All analyzed patients had 
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been discharged from the hospital or died and had complete data on age, sex, medical history, 

clinical presentation, and in-hospital events.  

 

Measurements 

 

To build risk stratification models, we included data on sociodemographics (age, sex, race, 

ethnicity, and payment source), medical history, home medications, and initial vital signs and 

laboratory values at admission. Medical history encompassed pertinent vascular, neoplastic, 

and immunological diseases. Home medications included medications commonly used to 

prevent or treat cardiovascular disease and its risk factors as well as chemotherapy and 

immunosuppressive medicines. Laboratory values included standard blood and chemistry 

parameters, cardiac biomarkers, and measures of inflammation and thrombosis. The complete 

online data collection form, powered by IQVIA (Parsippany, New Jersey), is available at 

https://www.heart.org/-/media/files/professional/quality-improvement/covid-19-cvd-

registry/ahacovidcvdcrf428-fillable-pdf.pdf?la=en. As we aimed to build a stroke risk 

stratification score that could be implemented at the time of hospital presentation, we did not 

include data on events, biomarkers, or treatments that occurred during the hospitalization 

(e.g., mechanical ventilation, rising plasma D-dimer, prophylactic anticoagulation, etc.).  

 

The primary outcome was an acute cerebrovascular event, defined as any acute ischemic 

stroke, intracerebral hemorrhage, subarachnoid hemorrhage, subdural hemorrhage, epidural 

hemorrhage, transient ischemic attack (TIA), or cerebral vein thrombosis diagnosed during the 
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index hospitalization. The secondary outcome was an ischemic cerebrovascular event, defined 

as any acute ischemic stroke or TIA diagnosed during the index hospitalization.  

 

Statistical Analysis 

 

We used descriptive statistics with exact binomial confidence intervals to characterize the 

patient cohort. We divided the analytical dataset into a derivation cohort (70% of the cohort) 

and a validation cohort (30% of the cohort). We created separate risk stratification models 

using different analytical techniques. This included a simple-to-use standard clinical score and 

more complex machine learning estimators using different statistical approaches. For both 

models, two neurovascular specialists (A.M. and B.N.) reviewed all available clinical data at 

admission and selected exposure variables they believed could be associated with incident 

cerebrovascular events based on biological plausibility and prior data.(9, 15, 19-21) Variables 

that were missing in more than 25% of patients were excluded. After applying these criteria, 32 

variables were analyzed as potential exposures for incident cerebrovascular events (Table 1). 

 

For the standard clinical score, we used data from the derivation cohort and performed 

univariate Cox regression with 5-fold cross validation techniques to identify clinical factors 

associated with the primary outcome at a p-value of <0.10. Factors significantly associated at 

the univariate level were then entered into a multivariable Cox regression model and any factor 

independently associated with the primary outcome at a p-value <0.05 was selected for the 

final model. We then applied the final model to the validation cohort and measured Harrel’s C-
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statistic to internally validate the results. To facilitate the score’s clinical applicability, we 

dichotomized continuous variables according to normal and abnormal values per standard 

criteria. For instance, white blood cell count was dichotomized as 11 K/uL (normal) or >11 

K/uL (abnormal) and temperature was dichotomized as <38.3° Celsius (afebrile) or 38.3° 

Celsius (febrile). As the six variables selected for the final model had overlapping hazard ratios 

and beta-coefficients for their association with the primary outcome when dichotomized, we 

assigned one point for each variable. 

 

For the machine learning models, we used data from the derivation cohort and performed 

regularized Cox regression, XGBoost, and Random Forest machine learning techniques to create 

separate risk stratification estimators using all available covariates.(22) Continuous variables 

were analyzed as continuous unlike for the standard clinical score. We used nonparametric 

bootstrap methods to calculate 95% confidence intervals (CI). We applied the final estimator 

models to the validation cohort and measured Harrel’s C-statistic to internally validate the 

results.  

 

Regularized Cox regression uses regularization techniques to achieve variable selection and 

provide accurate inference on an outcome’s predicted survival when a moderate number of 

potential predictors are available.(22) In our analysis, an elastic net penalty was used to 

regularize the model. Gradient tree boosting is an ensemble method that seeks to create a 

strong classifier (model) based on “weak” classifiers.(23) It fits a new model to the residuals of 

the previous prediction and then corrects the errors of the previous model by adding the new 
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model. XGBoost implements gradient tree boosting with an additional custom regularization 

term in the objective function to achieve better model performance and faster execution 

speed. Random Survival Forest is an extension of the Random Forest method for analyzing 

survival data. The Random Survival Forest technique first draws bootstrap samples from the 

original data, then grows a survival tree for each bootstrap sample, and finally calculates a 

cumulative hazard function for each tree.(22, 23) The ensemble cumulative hazard function is 

obtained by averaging individual cumulative hazard functions. Prediction error is calculated by 

using the ensemble cumulative hazard function.  

 

In secondary analysis, we measured the discriminatory performance of both the standard 

clinical score and the machine learning estimators for the secondary outcome of ischemic 

cerebrovascular events.  

 

Plasma D-dimer was not analyzed as a potential exposure in our risk stratification models 

because 60% of patients had missing values at admission. However, as prior studies have 

reported that D-dimer may be associated with an elevated risk of ischemic stroke among 

patients with COVID-19 infection, we performed an exploratory analysis restricted to the 40% 

of patients with D-dimer values at admission.(9, 19) For this analysis, we followed the same 

methodology used to derive the risk stratification models above except all eligible patients 

were used for both derivation and validation. 
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Deidentified data from this registry were analyzed by C.Z. through the AHA’s online Precision 

Medicine Platform (https://precision.heartorg/) using RStudio, version 3.6.0 (R Foundation). We 

used multiple imputation to account for missing data (mean imputation for continuous 

variables and median imputation for binary variables). 

 

Results 

 

Patient Characteristics and Outcomes 

 

We evaluated 21,420 patients hospitalized with COVID-19. Their median age was 62 years 

(interquartile range [IQR], 49-75) and 54% were men. During a median hospitalization duration 

of 11 days (IQR, 6-18), there were 312 (1.5%) patients diagnosed with an acute cerebrovascular 

event, including 168 with acute ischemic stroke, 48 with intracerebral hemorrhage, 33 with 

subarachnoid hemorrhage, 22 with subdural/epidural hemorrhage, 9 with TIA, 2 with cerebral 

venous thrombosis, and 48 with stroke not otherwise specified (some patients had multiple 

events, so events sum to more than 312). Patients with a cerebrovascular event were on 

average older, more often men, had more vascular risk factors, higher systolic blood pressures, 

lower temperatures, and higher white blood cell and platelet counts than patients without a 

cerebrovascular event. The median duration from hospital admission to cerebrovascular event 

diagnosis was 2 days (IQR, 1-8). The median NIH Stroke Scale was 10 (IQR, 3-20). In-hospital 

mortality was 35% among patients diagnosed with a cerebrovascular event and 14% among 

patients not diagnosed with a cerebrovascular event (p<0.001).  
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Standard Clinical Score  

 

Among the 32 analyzed variables, we identified 6 variables at admission that were 

independently associated with increased risk of an acute cerebrovascular event during 

hospitalization with COVID-19 infection (Table 2). These variables were prior stroke or TIA, 

lower body temperature, no previous pulmonary disease (COPD, asthma, other pulmonary 

disease), history of hypertension, elevated serum white blood cell count, and elevated systolic 

blood pressure. In the validation cohort, a clinical score comprising these six variables had a 

Harrel’s C-statistic of 0.66 (95% CI, 0.60-0.72) for predicting an acute cerebrovascular event. For 

the secondary outcome of ischemic stroke or TIA, the score’s C-statistic was 0.67 (95% CI, 0.59-

0.76).  

 

After dichotomizing continuous variables to enable bedside calculation and assigning 1 point for 

each variable, the CANDLE risk stratification score was derived as follows: Cerebrovascular 

disease history, Afebrile temperature (<38.3° Celsius), No pulmonary disease history, Disorder 

of hypertension, Leukocytosis (white blood cell count >11 K/uL), and an Elevated systolic blood 

pressure (>140 mm Hg). The magnitude and precision of the independent associations between 

CANDLE’s dichotomized variables and an acute cerebrovascular event are provided in Table 3. 

We stratified the risk of an acute cerebrovascular event according to low (0-1), medium (2-3), 

and high (4-6) risk groups. In the derivation cohort, the low-risk group had a 0.2% risk (95% CI, 

0.1%-0.7%) of incident cerebrovascular events, while the medium-risk group had a 1.1% risk 
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(95% CI, 0.9%-1.3%), and the high-risk group had a 3.0% risk (95% CI, 2.5%-3.6%) (Fig 1). In the 

validation cohort, the low-risk group had a 0.2% risk (95% CI, 0.0%-1.2%) of incident 

cerebrovascular events, while the medium-risk group had a 1.1% risk (95% CI, 0.8%-1.4%), and 

the high-risk group had a 2.1% risk (95% CI, 1.5%-2.9%) 

 

Machine Learning Models 

 

The machine learning risk stratification models had similar discriminatory performance to 

CANDLE for the primary outcome. Random Forest performed best with a validation cohort C-

statistic of 0.69 (95% CI, 0.65-0.72), regularized Cox regression had a validation cohort C-

statistic of 0.67 (95% CI, 0.60-0.73), and XGBoost had a validation cohort C-statistic of 0.63 (95% 

CI, 0.56-0.70). For the secondary outcome of ischemic cerebrovascular events, the C-statistics 

were 0.69 (95% CI, 0.64-0.75) for the Random Forest model, 0.63 (95% CI, 0.54-0.73) for the 

regularized Cox regression model, and 0.64 (95% CI, 0.58-0.71) for the XGBoost model.  

 

Exploratory D-dimer Analysis 

 

Plasma D-dimer at admission was associated with an incident cerebrovascular event in 

univariate (hazard ratio per unit in ug/mL, 1.06; 95% CI, 1.03-1.09) but not multivariable (hazard 

ratio per unit in ug/mL, 1.03; 95% CI, 1.00-1.06; p=0.15) Cox regression analyses. As D-dimer 

was not independently associated with an increased risk of incident cerebrovascular events, we 

did not evaluate whether its addition would improve the discriminatory ability of the CANDLE 
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score. 

 

When D-dimer was added as a potential exposure variable to the three machine learning 

estimators, discriminatory performance of these models were similar to their original versions. 

The Random Forest model had a C-statistic of 0.67 (95% CI, 0.65-0.68), the regularized Cox 

regression model had a C-statistic of 0.72 (95% CI, 0.67-0.77), and the XGBoost model had a C-

statistic of 0.65 (95% CI, 0.60-0.69). While discriminatory performance did not improve, D-

dimer was a selected exposure in the regularized Cox regression estimator and an important 

feature of the Random Forest and XGBoost models.  

 

Discussion 

 

Using data from over 21,000 patients enrolled into the AHA’s multicenter COVID-19 

Cardiovascular Disease registry, we created an easy-to-use clinical score, entitled CANDLE, to 

help stratify stroke risk among patients hospitalized with COVID-19 infection. CANDLE includes 

6 variables—history of cerebrovascular disease, lack of fever, no history of pulmonary disease, 

history of hypertension, serum leukocytosis, and an elevated systolic blood pressure—that can 

be easily ascertained at hospital presentation though medical history, vital signs, and basic 

laboratory evaluation. The score’s C-statistic was 0.66 for any cerebrovascular event and 0.67 

for an ischemic cerebrovascular event, indicating moderate discriminatory performance for 

both outcomes. When grouped into different risk categories, a low-risk score of 0-1 estimated a 

0.2% risk of an incident cerebrovascular event, while medium- and high-risk scores of 2-6 
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indicated considerably higher cerebrovascular event risks, ranging from 1.1%-3.0%. Therefore, 

the score may be most useful in identifying patients who are highly unlikely (i.e., one-in-five 

hundred) to develop stroke during COVID-19 hospitalization and consequently may not warrant 

the same degree of monitoring or prophylactic treatments as other patients. 

 

We also derived three machine learning estimators utilizing different statistical approaches to 

predict stroke risk during COVID-19 hospitalization. Despite more sophisticated models 

incorporating more quantitative and qualitative data from hospital admission, the 

discriminatory performance of these machine learning estimators was similar to that of the 

easy-to-use CANDLE score. In exploratory analyses restricted to the 40% of patients with 

available plasma D-dimer values at admission (n=8,523), including D-dimer in the three machine 

learning estimators did not significantly improve their discriminatory ability, indicating that D-

dimer is not a reliable risk marker for stroke among patient’s hospitalized with COVID-19.  

 

Some of our findings align with existing literature while others are novel and require further 

discussion. Prior studies have reported that history of cerebrovascular disease and 

hypertension may be risk factors for stroke in patients with COVID-19 infection.(13, 15, 24) This 

includes a descriptive study that we published using a smaller sample from the AHA’s COVID-19 

Cardiovascular Disease Registry.(25) Further, acute hypertension is a known short-term risk 

factor or trigger for cerebrovascular events, particularly hemorrhagic stroke, and it sometimes 

reflects a physiological response to stroke that has already manifested.(26, 27) Serum 
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leukocytosis is a nonspecific marker of systemic inflammation, and inflammation is a probable 

risk factor for stroke in people with and without COVID-19 infection.(28-30)  

 

Our finding that patients without prior pulmonary disease face a higher risk of stroke with 

COVID-19 was less expected. As history of pulmonary disease is associated with an increased 

risk of hospitalization and respiratory failure from COVID-19 infection,(31, 32)  it is possible that 

patients without prior pulmonary disease who became hospitalized with COVID-19 infection 

had a more severe systemic syndrome resulting in higher degrees of inflammation, 

endotheliopathy, and hypercoagulability. Conversely, it is also possible that patients with 

pulmonary disease were more likely to succumb earlier to COVID-19 infection, reducing the 

time available to develop stroke (i.e., severe COVID-19 infection served as a competing risk) or 

they were more likely to be sedated in an ICU making stroke detection more difficult.  

 

We also found that lack of fever at presentation was associated with heightened stroke risk in 

patients hospitalized with COVID-19. A potential explanation for this finding is that patients 

who can mount an appropriate early febrile reaction to SARS2-CoV-2 may be less likely to 

develop a maladaptive delayed inflammatory response which is linked to more severe forms of 

COVID-19 infection and corresponding increased risks of thromboembolism.(33, 34) In support 

of this hypothesis, high fever has been associated with a lower risk of death among patients 

hospitalized with COVID-19 pneumonia.(35) Alternatively, the observed association between a 

normal presenting temperature and increased stroke risk among patients hospitalized with 

COVID-19 could be because in some patients the viral infection was asymptomatic or mild and 
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stroke or conditions predisposing to stroke were the primary reason for hospital admission—

the registry does not distinguish patients hospitalized for COVID-19 versus those hospitalized 

with COVID-19.  

 

Our study had several notable limitations. First, it was limited to patients enrolled into the 

AHA’s COVID-19 Cardiovascular Disease registry. While this registry includes data from urban 

and rural hospitals from all geographic regions and settings in the U.S. during the first 13 

months of the pandemic, this study’s findings may not generalize to non-participating U.S. 

hospitals, other countries, or infection with novel COVID-19 variants, such as the Delta or 

Omicron variants. Similarly, we lacked data on vaccination status and most patients were 

enrolled in 2020 before vaccines became widely available; therefore, the validity of our results 

amongst vaccinated patients is uncertain. Second, we had few data on advanced laboratory 

tests that reflect heightened coagulability and inflammation (e.g., interleukin-6, anti-

phospholipid antibodies) and therefore did not include these biomarkers in our risk 

stratification models. Prior studies have found that elevated markers of inflammation and 

coagulation, particularly D-dimer, are associated with an increased risk for stroke in patients 

with COVID-19 infection.(19, 36) Because of a high rate of missingness predisposing to selection 

bias, we restricted our analysis of D-dimer to an exploratory analysis, the results of which are 

hypothesis-generating. Third, as we aimed to build a stroke risk stratification score that could 

be implemented upon hospital presentation, we did not account for in-hospital events such as 

acute respiratory distress syndrome, mechanical ventilation, venous thromboembolism, or 

administered anti-viral and anti-thrombotic medications, which could have affected stroke risk 
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among patients hospitalized with COVID-19.(3, 13) Fourth, we lacked data on stroke 

mechanisms and therefore could not evaluate our risk stratification models for differential 

discriminatory performance according to individual stroke subtypes. Fifth, we could not account 

for potentially important patient- and hospital-level factors that varied over time, such as 

patient willingness to visit the hospital, evidence-based treatments for COVID-19 treatment, 

and hospital resources and thresholds for brain imaging.  

 

In conclusion, we created and internally validated an easy-to-use clinical score, entitled 

CANDLE, and several complex machine learning estimators, to help clinicians in stratifying 

patients’ stroke risk at the time of hospitalization with COVID-19 infection. Before clinical use, 

these risk stratification models should be validated in external cohorts with more 

contemporaneous SARS-CoV-2 variants. Further, they should be evaluated for their ability to 

predict all thromboembolic events, not just stroke, as that may be more helpful for frontline 

providers when deciding which patients to treat with prophylactic antithrombotic therapy. In 

the meantime, these risk stratification models, which were derived from one of the largest and 

most diverse COVID-19 cohorts in the world, may provide clinicians with useful estimates for 

stroke risk among patients presenting to their hospital with COVID-19 infection.  
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Figure Legend 

 

Figure 1 

 

Title: CANDLE: a stroke risk stratification score for patients hospitalized with COVID-19 

infection. 

 

Legend: The CANDLE score ranges from 0-6 and assigns 1 point each for Cerebrovascular 

disease history, Afebrile temperature (<38.3° Celsius), No pulmonary disease history, Disorder 

of hypertension, Leukocytosis (white blood cell count >11 K/uL), and an Elevated systolic blood 

pressure (>140 mm Hg). Bar graphs display patients’ risk of an acute cerebrovascular event 

during hospitalization with COVID-19 infection according to low-risk (score 0-1), medium-risk 

(score 2-3), and high-risk (score 4-6) groups. Separate graphs are shown for the derivation and 

validation cohorts.  
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Table 1. Baseline Characteristics of Hospitalized COVID-19 Patients with and without an 
Acute Cerebrovascular Event  

 
Characteristica 

No Cerebrovascular Event 
(n=21,108) 

Cerebrovascular Event 
(n=312) 

Demographics   

 Age, y, median (IQR) 62 (49-75) 66 (59-74) 

 Male sex 11,389 (54) 196 (63) 
 Race/Ethnicity   

    Non-Hispanic White 8,041 (38) 127 (41) 

    Non-Hispanic Black 5,419 (26) 92 (29) 

    Hispanic 5,387 (26) 54 (17) 

    Asian 836 (4) 18 (6) 

    Other/Unknown 1,425 (7) 21 (7) 

 Insurance   

    Medicare/Medicaid 5,450 (26) 71 (23) 

    Private 13,484 (64) 203 (65) 

    Other 2,174 (10) 38 (12) 

Medical History   
 Hypertension 13,592 (64) 242 (78) 

 Hyperlipidemia 9,878 (47) 167 (54) 

 Diabetes 7,945 (38) 134 (43) 

 Prior stroke/TIA 2,530 (12) 74 (24) 

 Heart failure 7,277 (34) 126 (40) 

 Coronary artery disease 2,078 (10) 42 (13) 

 Peripheral vascular disease 573 (3) 9 (3) 

 Chronic pulmonary disease 3,945 (19) 36 (12) 

 Chronic kidney disease 2,714 (13) 45 (14) 

 Atrial fibrillation/flutter 2,025 (10) 49 (16) 

 Cancer 2,626 (12) 43 (14) 

 HIV 217 (1) 2 (1) 

 Autoimmune disorder 947 (5) 9 (3) 

 Tobacco use 1,382 (7) 23 (7) 

 Alcohol use 5,586 (12.1) 41,875 (2.5) 

Home Medications   

 Antiplatelet 5,689 (27) 113 (36) 

 Anticoagulant 2,900 (14) 56 (18) 

Initial Vital Signs (IQR)   

 Temperature  37.2 (36.7-37.8) 37.0 (36.6-37.4) 

 Oxygen saturation  95 (93-97) 96 (93-98) 

 Systolic BP  131 (116-144) 134 (117-152) 

 Heart rate  94 (80-106) 87 (75-102) 

 Respiratory rate  20 (18-24) 20 (18-24) 
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 BMI, kg/m2 30 (26-34) 30 (25-33) 

Admission Labs (IQR)   

 WBC count, K/uL 7.1 (5.2-9.5) 8.1 (6.5-11.4) 

 Hemoglobin, g/dL 12.9 (11.5-14.3) 12.9 (10.9-14.1) 

 Platelet count, K/uL 208 (159-263) 223 (166-286) 

 Hemoglobin A1c, %  6.9 (6.1-8.9) 6.5 (5.9-7.9) 

 Creatinine, mg/dL 1.04 (0.80-1.62) 1.10 (0.87-1.68) 

Abbreviations: IQR, interquartile range; TIA, transient ischemic attack; HIV, human 
immunodeficiency virus; WBC, white blood cell 
aData are presented as number (%) unless otherwise specified. 
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Table 2. Baseline Variables Independently Associated with an Acute Cerebrovascular Event 
in the Derivation Cohort 

Variablea Univariable HR (95% CI) Multivariable HR (95% CI) 

Prior stroke or TIA 2.6 (1.9-3.5) 2.4 (1.8-3.3) 
Temperatureb  0.7 (0.6-0.9) 0.8 (0.7-0.9) 
History of pulmonary disease 0.6 (0.4-0.9) 0.6 (0.4-0.8) 
History of hypertension 2.1 (1.5-3.0) 2.0 (1.4-2.7) 
White blood cell countb 1.05 (1.02-1.08) 1.05 (1.02-1.07) 
Systolic blood pressurec 1.09 (1.03-1.15) 1.09 (1.03-1.15) 
Abbreviations: HR, hazard ratio; CI, confidence interval; TIA, transient ischemic attack.  
aCox regression with 5-fold cross validation was used to identify baseline clinical factors 
associated with the primary outcome of an acute cerebrovascular event. Factors associated at 
the univariate level (p<0.10) were then entered into a multivariable Cox regression model. 
Factors independently associated with the primary outcome at p<0.05 are described herein. 
Temperature, white blood cell count, and systolic blood pressure were analyzed as continuous 
variables, while prior stroke or TIA, history of pulmonary disease, and history of hypertension 
were analyzed as dichotomous variables.  
bTemperature and white blood cell count were analyzed per unit of each.  
cSystolic blood pressure was analyzed per 10 units mmHg. 
  

 

Table 3. CANDLE: A Clinical Score for Stratifying Stroke Risk among Patients Hospitalized 
with COVID-19 Infection 

CANDLE Parameters Multivariable HR (95% CI) 

Cerebrovascular disease history 2.5 (1.9-3.4) 
Afebrile temperature (<38.3° Celsius) 2.1 (1.3-3.4) 
No pulmonary disease history 1.8 (1.2-2.6) 

Disorder of hypertension 1.9 (1.4-2.7) 
Leukocytosis (WBC count >11 K/uL) 1.7 (1.2-2.2) 
Elevated systolic blood pressure (>140 mm Hg) 1.7 (1.3-2.2) 
Abbreviations: HR, hazard ratio; CI, confidence interval; WBC, white blood cell.  
aMultivariable Cox regression was used to examine the independent association between 
baseline clinical parameters and the risk of an acute cerebrovascular event. 

 

 

                  


